Transfer of gene to human retinal pigment epithelial cells using magnetite cationic liposomes.
نویسندگان
چکیده
AIM To present a new method called magnetolipofection which can transfect cells in a specific area of the retinal pigment epithelium (RPE) by magnetic force as a non-viral gene transfection. METHODS ARPE-19 (a human RPE cell line) cells were cultured with a mixture of cationic lipid, plasmid DNAs and magnetite nanoparticles. A sheet of ARPE-19 cells was transfected in the vertical direction by placing a magnet under the centre of the culture plate. Horizontal gene transfection was also performed. RESULTS When magnetolipofection was performed in the vertical direction, there was a significantly larger number of green fluorescent protein (GFP)-positive cells where the magnet was placed than in the peripheral area, and the number was equivalent to the number transfected with Lipofectamine2000. In the horizontal direction, there was also a significantly larger number of GFP-positive cells, but there was almost no gene transfer detected using Lipofectamine2000. CONCLUSION The area of gene transfection can be controlled by the placement of a magnet in the area selected to be transfected in vitro by magnetolipofection. This method can be used to transfect RPE cells in selected areas which should be helpful for experimental and clinical applications.
منابع مشابه
Extremely low frequency-pulsed electromagnetic fields affect proangiogenic-related gene expression in retinal pigment epithelial cells
Objective(s): It is known that extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) influence multiple cellular and molecular processes. Retinal pigment epithelial (RPE) cells have a significant part in the emergence and pathophysiology of several ocular disorders, such as neovascularization. This study assessed the impact of ELF-PEMF on the proangiogenic features of RPE cells. Mate...
متن کاملInvestigating lipopolymers based on polyethylenimine and nanoliposome for gene delivery to prostate cancer (PC3) cell line
Background: Non-viral Nano carriers such as liposomes and cationic polymers based on engineered properties are regarded in gene delivery field. Although these carriers do not have weaknesses of viral vectors, but they are less efficient than viruses and they still need to be improved as favorable gene delivery carriers. Amongst non-viral carriers, cationic liposomes have been proposed for clini...
متن کاملNovel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells
BACKGROUND Human retinal pigment epithelial cells are promising target sites for small interfering RNA (siRNA) that might be used for the prevention and/or treatment of choroidal neovascularization by inhibiting the expression of angiogenic factor; for example, by downregulating expression of the vascular endothelial growth factor gene. METHODS A novel functional lipid, DSPE-PEG-RGD, a Arg(R)...
متن کاملPreparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes
PURPOSE Cationic liposomes (CLs) are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the defi...
متن کاملتمایز سلول های بنیادی پرتوان به سلول های اپیتلیوم رنگدانه دار شبکیه چشم،راهکاری برای درمان بیماری های تخریب شبکیه
Pluripotent stem cells as the cells with a capacity for self-renewal and differentiation into various specificcell types have been highly regarded in regenerative medicine studies. To repair the eye disease damages, thedifferentiation into retinal pigment epithelial cells of pluripotent stem cells has gained great importance inrecent decades because the inappropriate function of these cells is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The British journal of ophthalmology
دوره 94 8 شماره
صفحات -
تاریخ انتشار 2010